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The Galerkin method is applied in a new way to problems of stationary and oscil- 
latory convective instability. By retaining the time derivatives in the equations 
rather than assuming an exponential time-dependence, the exact solution is 
approximated by the solution to a set of ordinary differential equations in time. 
Computations are simplified because the stability of this set of equations can be 
determined without finding the detailed solution. Furthermore, both stationary 
and oscillatory instability can be studied by means of the same trial functions. 
Previous studies which have treated only stationary instability by the Galerkin 
method can now be extended easily to include oscillatory instability. The method 
is illustrated for convective instability of a rotating fluid layer transferring heat. 

1. Galerkin method 
Convective instability problems determine the stability of a quiescent state 

characterized by u = 0. The simplest example is that of fluid layer heated from 
below, which is treated by Chandrasekhar (1961) including the effects of rotation 
and a magnetic field. A similar problem concerns the stability of Couette flow 
between rotating cylinders, which is treated by Chandrasekhar (1961), Krueger 
& DiPrima (1964) and others. In both of these problems the study of oscillatory 
instability, in which the perturbation grows in an oscillatory manner, is inher- 
ently more difficult than is the study of stationary instability, in which the pertur- 
bation grows in an exponential manner. In  the new approach, an initial value pro- 
blem is solved approximately by the Galerkin method. The stability of the system 
is approximated by the solution to successively larger sets of ordinary differential 
equations, whose stability can be determined by several well-known techniques, 
including the Routh-Hurwitz criterion used here. Oscillatory instability can be 
studied along with stationary instability with little increase in effort. 

For definiteness consider the equations governing the onset of convection in 
a fluid layer which is heated from below and rotated about a vertical axis. The 
basic equations, given by Chandrasekhar (1961, pp. 89-90), can be rearranged 
to the form: 

(1.1) i 
aw 
at 

at at 

( 0 2  - ~ 2 )  - = (0'- u2)2w - Rh& - TQDz, 

ae a x  
Pr-  = (D2-a2)O+R*uw, - = (D2-u2)z+T*Dw,  
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where w is the e, component of velocity, 8 is the temperature, z is the e, com- 
ponent of vorticity, R = golpd4/~v is the Rayleigh number, T = 4!2d4/v2 is the 
Taylor number, Pr = v / K  is the Prandtl number, g is the acceleration of gravity, 
a i s  the coefficient of thermal expansion, p is the magnitude of the initial tem- 
perature gradient, d is the thickness of the layer, K is the thermal diffusivity, v is 
the kinematic viscosity, Q is the speed of rotation of the layer, a is the wave- 
number, and D = ajax. 

In the Galerkin method the solution is expanded in terms of a series with un- 
known coefficients which depend on time 

(1.2) 

M I 

In the usual treatment (see DiPrima 1955, 1960; Krueger & DiPrima 1964) an 
exponential time-dependence is assumed, but by retaining the time derivatives 
we obtain computational and conceptual advantages which are enumerated 
below. The trial functions are substituted into (1.1) to form the residuals, which 
are made orthogonal (in the spatial domain) to each of the respective approxi- 
mating functions. The resulting system of 3M ordinary differential equations 
can be represented 

(1.3) 
=dA = -  dB E _. = BA or - = E-lBB = DB 

at dt 

where JT = (Al,  B,, C,, ..., A,, B,,, C,,) and Bki and E,<, include terms of the 

form [W,, ( 0 2 - - 2 )  4 1 ,  etc., where [u,v] = uvdx is the inner product. The 

inverse of the matrix E,, exists if its determinant is non-zero, which is assumed. 
The stability of the system is governed by the stability of the set of ordinary 
equations (1.3) as a function of the parameters. The stability is determined for 
successively higher M ,  and if the results seem to converge the approximation is 
expected to represent the stability of the original system (1.1). The usual treat- 
ment by Galerkin’s method can be recovered by setting 2 5 e%: 

The chief advantage of viewing the system of ordinary differential equations 
rather than the equivalent set of algebraic equations is that powerful methods 
are available for studying the stability of (1.3) without actually solving it and 
these methods are equally applicable for stationary or oscillatory instability. 
Thus, authors who have previously applied the Galerkin method to determine 
only stationary instability can now easily study oscillatory instability simply 
by examining a different function of the parameters, as outlined below. 

lo1 

(B-aE=)Z = 0. (1.4) 

The solution t o  (1.3) is known (cf. Frazer, Duncan & Collar 1946, p. 288) 
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where the Cj are constants if the eigenvalues hi are distinct. The system of equa- 
tions is asymptotically stable if 

limA = 0 (1.6) 
t e r n  

and the necessary and sufficient condition that the system be asymptotically 
stable is that all the eigenvalues of D, have negative real parts (Gantmacher 
1959, p. 144). The eigenvalues of Dij can be calculated from 

(1 .7 )  
However, since 

(1.8) 

and E,  is non-singular, the eigenvalues of Dij are just the exponential time factor, 
cr, found from the usual Galerkin method, equation (1.4). The advantage of the 
new approach, using undetermined functions, A,(t), B,(t), Ci(t), is that the eigen- 
values of Dij need not be calculated. Whether or not the eigenvalues have nega- 
tive real parts can be decided by existing methods which are much simpler 
and shorter than the methods used to actually determine the eigenvalues. In 
particular, the Routh-Hurwitz criterion is especially useful. 

The Routh-Hurwitz criterion gives necessary and sufficient conditions for all 
the roots of a real polynomial to have negative real parts. The determinantal 
equation (1.7) can be rewritten as the polynomial 

(1.9) 

The criterion is (cf. Gantmacher 1959, p. 231) that the roots all have negative 

T i > O  ( i = l , 2  ,..., n),  (1.10) real parts if 

where Ti are the successive determinants formed from the matrix 

det (Dij - Asij) = 0. 

det (B,  - hE,) = det Ei, det (Dkj  - Asrcj) 

hn+a,hn-l+ ... +an-,h2+a,-,h+a, = 0. 

( 1 . 1 1 )  

i.e. T, = a,, T, = ala2-a3, etc. The coefficients ai depend on the matrix Dij 
(Aris 1962, p. 270) 

where ti;3 D is the sum of all the p x p determinants that can be formed with 
diagonal elements that are diagonal elements of Di j .  For example 

at = (-1)itr3D, (1.12) 

a, = - tr D,  

a,= (-1)ndetD. , 
(1..13) 

Additional information is given by Orlando's formula (Gantmacher 1959, 
p. 234): Tn-l = 0 if and only if the sum of at  least one pair of roots of the poly- 
nomial is zero. Neutral oscillatory instability is characterized by cr = h = io. 
When the coefficients ai are real, the complex roots of (1.9) can occur only in 
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pairs, including the complex conjugates + i w .  The sum of these two roots is 
zero, and TnPl = 0 for neutral oscillatory instability. The case of neutral 
stationary instability is characterized by h = 0, in which case a, = 0. 

The following procedure can be used to study the stability of the system of 
equations (1.3) as a function of Prandtl, Taylor and Rayleigh numbers. Duncan 
(1952, p. 117) first developed this procedure for the study of dynamical systems 
governed by sets of ordinary differential equations. For a specified value of 
Pr and T, consider the system as a function of R. The system is stable for R = 0 
since then only dissipation mechanisms occur; all the Hurwitz determinants 
are positive. Increase R monotonically until a critical condition is reached such 
that any further change would result in instability. If one looks at the path of the 
eigenvalues in the complex plane as R is changed, the critical condition corre- 
sponds to an eigenvalue passing from the left half-plane, in which the real part 
is negative, to the right half-plane, in which the real part is positive. The eigen- 
value can pass from one side to the other in two ways: either it will pass through 
zero, corresponding to neutral stationary instability and a, = 0, or a pair of 
purely imaginary complex roots will exist, corresponding to neutral oscillatory 
instability and Tn-l = 0. Consequently, the stability of any system can be settled 
by examining a, and TnPl as functions of increasing R. Whichever condition 

a,= 0, TnPl = 0 (1.14) 

occurs first determines the type of instability, and the value of R there is the 
critical stability parameter. For that value of R the other Hurwitz determinants 
must be positive, of course. 

The set of ordinary differential equations (1.3) is just an approximation to the 
system of partial differential equations (1.1). Successive approximations must 
be compared to ensure the approximation is a good one. For approximations 
beyond the first, the computations can conveniently be done on a computer, and 
the program code is suitable for many different stability problems. 

It is clear that previous applications of the Galerkin method to stationary 
instability concentrated on satisfying the condition a, = 0. Previous analyses 
can now easily be extended to include oscillatory instability simply by examin- 
ing a different function of the parameters l'n.-l. The Galerkin method, as out- 
lined here, has computational advantages over the usual Galerkin method 
because it is much faster? to evaluate 5?n-l than it is to find the roots to the poly- 
nomial (1.9) corresponding to the usual approach. Furthermore, certain features 
of the exact solution, such as the exchange of stabilities, are exemplified by 
the algebraic manipulations for the first approximation, as is illustrated below. 

2. Example 
The equations governing the onset of convection in a fluid layer which is 

heated from below and rotated about a vertical axis are given by (1 .1)  These 
equations are solved approximately here for the case of two rigid boundaries in 

t It is eighty times faster using the standard subroutines available at  the University of 
Minnesota for the Control Data 1604 computer. 
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order to illustrate the results that can be achieved for both stationary and 
oscillatory instability when using the same trial functions. The results are com- 
pared with the approximate results achieved by Chandrasekhar (196 l),  whose 
treatment required a great deal more computation. The method is applied to a 
new problem in the companion paper (Finlayson & Scriven 1968). 

Since the basic results are already known, consider only the first approxima- 
tion, which can be treated analytically. Three sets of approximating functions 
are assumed which satisfy the boundary conditions (see below) and each set is 
orthogonal. Equation (1.3) then simplifies to 

dA 
dt 

(7 + a2) -- = - (a  +pa2 + a4) A + R*uCYB + T k C ,  

Pr- dB = R~uCYA - ( V  + a') B,  
dt 

- = -T&A-(C+az)C, 
dC 
at J 

(2.1) 

where 

(2 .2 )  

a = [D4W, W ] ,  p = - 2[D2W, W ] ,  S = [O, W ] ,  
E = [DZ, W ]  = - [Z, D W ]  when W = 0 on the boundary, 

c= - [D22,  21, 7 = - [D'W, W ] ,  v = - [ D V ,  01. 

Equation (2.1) can be rearranged into the form of (1.3) where 

q+a2 0 0 
- 
E =  [ 7 t], detEij$-O 

and 
- (a+,8a2+u4) RhuS 0 0 €  

B = [ R4as -((v+a2) 0 ]+.;[;:. ; j. (2.3) 

- T m  0 - F  1. 

0 0 - ( < + a 2 )  

The matrix B, has been split into its symmetric and antisymmetric parts. 
When the Taylor number is zero, the matrix is symmetric and can have only real 
eigenvalues; hence oscillatory instability is impossible. This is a proof of the 
principle of exchange of stabilities, shown for the non-rotating layer by Pellew 
& Southwell (1940). It is clearly evident here because of the way the equations 
were non-dimensionalized, following the procedure first suggested by Sani (1  963). 
The matrix B must have a certain amount of asymmetry before oscillatory in- 
stability occurs. The matrix D in (1.3) becomes 

- C / B  RiEIB TBDIB 

(2.4) = R*E/Pr -AIPr 

where A = v+u2,  B = 7+u2,  C = a+/3a2+a4, D = 6, E = US and F = C+a2. 
The stability of this system is determined by det Dii = 0 for stationary in- 
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stability (1.14) or T, = a1a2 - a3 = 0 for oscillatory instability, where a, = - tr D,  
a2 = tr, D ,  and a3 = - det D. The results are 

( 2 . 5 )  I C A  + TD2A/F 
E2 

RS=----- - 

C + F B  C+BF+TD2Pr2 _. __ 
(CPr+AB)  (A+PPr)  

and when oscillatory instability occurs the frequency is given by 

(2 .6)  

To this point in the analysis all results apply to the exact solution, provided we 
interpret the functions W ,  8 and Z in equations (2.2) as the exact solution. 
The validity of the principle of exchange of stabilities is clearly evident, as is the 
dependence of R, and o on the parameters of the problem. For the approximate 
solution these expressions must be minimized with respect to the wave-number 
a in order to find the lowest possible Rayleigh number for any disturbance. 
This computation is most conveniently done on a computer. Note that while the 
numerical values in (2 .5 ) ,  (2.6) depend upon the trial solution (and hence the 
boundary conditions) the structure of the equations does not. Thus the same com- 
puter program can calculate results for different, boundary conditions, corre- 
sponding to the different numerical values of the integrals. 

The results for very large Taylor number are 

while for oscillatory instability 

as Pr2T + co. 1 

(2 .7)  

The type of instability which occurs will have the lower value of.the critical 
Rayleigh number. In  the limit of large Taylor number, the critical Rayleigh 
number for stationary instability is always less than that for oscillatory in- 
stability whenever the Prandtl number is greater than 0.67659. This result 
is derived in the same manner used by Chandrasekhar (1961, p. 118) to prove the 
result for the exact solution for free boundaries. However, the nem7 result for 
rigid-rigid or rigid-free boundaries applies only to the first approximation. 

In order to obtain numerical results, the approximating functions are chosen 
to  be orthonormal functions satisfying the boundary conditions, which for rigid 
boundaries are 

Derived, or secondary, boundary conditions are obtained by requiring that the 
differential equation (1 .1)  be satisfied on the boundary : 

W = D w = B = Z = O  at x = & + .  (2.9) 

D28 = D2Z = 0 at x = f i, (2.10) 
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The W and 0 functions are even while 2 is an odd function. A set of approximat- 
ing functions which satisfies these requirements is 

H(x) = 24 cos77x, 

Z ( x )  = 24 sin 277x. 

(2.11) 

Fixed-fixed 
Integral boundaries 

a 500.5639 
P 24.65216 
d 0.9862404 
t 3-493051 
5 39.47842 
7 12.32608 
V 9.869604 

TABLE 1.  Values of integrals 

12 
3 4 

0 2 4 6 8 10 

log T 

FIGURE 1. The variation of R, with T .  P.r = 0.025, - , stationary instability; ----, 
oscillatory instability. ( a )  this work; (b)  Chandrasekhar (1961). 



208 Bruce A .  Pinlayson 

These functions give rise to the values of the integrals listed in table 1, and 
the velocity functions, Cl(x), are derived by Reid & Harris (1958). 

Illustrative results are presented in figure 1. While not as accurate as Chan- 
drasekhar’s approximate solution, the results are reasonable as a first approxi- 
mation considering the greater ease with which they were determined. Higher 
approximations have not been calculated since most of the results are already 
known. The accuracy of the asymptotic formula (2.7) can be assessed by compar- 
ing R + 10.OT3 obtained there as a first approximation, to R -f 8.69113 obtained 
by Niiler & Bisshopp (1965) in a rigorous asymptotic analysis. For oscillatory 
instability, the only computations that exist are €or Pr = 0.025, and equations 
(2.8) give answers which differ from Chandrasekhar’s by 41% in R, 6 %  in a 
and 22 yo in w for T = Equations (2.8) can then be used for other Prandtl 
numbers as a first approximation with about this degree of accuracy. Note also 
that (2.7) and (2.8) are valid for the case of rigid-free boundaries; only the values 
of 6 and 6 differ corresponding to different trial functions for W and 8. 

3. Conclusion 
By retaining the time derivatives in the equations and using the Galerkin 

method to reduce the set of partial differential equations to a set of ordinary 
differential equations, it is possible t o  study easily both stationary and oscillatory 
instability. Previous analyses which have used the Galerkin method to study 
stationary instability can be extended to include oscillatory instability simply 
by looking at another function of the parameters, TnPl. This application of the 
Galerkin method provides a powerful tool for finding approximate solutions to 
convective instability problems. 

The results presented in this note were obtained in the course of research at 
the University of Minnesota while holding a National Science Foundation 
Graduate Fellowship working under the direction of Professor L. E. Scriven. 
Support in part was received from the Air Force Office of Scientific Research 
through Grant no. 219-63. 
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